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Abstract 

The path integral quantization of gauge theories leads to an effective Lagrangian denoted by L,ff 
Its associated equation of motion is of the form 

where JA is the vacuum polarization current arising from propagation of quantum fields around the 
background field A. In this paper we will give a more detailed description of the current JA. 0 1998 
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1. Introduction 

The Yang-Mills equation is the equation of motion of a physical system in which matter 
fields are absent. Its Lagrangian is therefore of the most simplest form: 

1 
LYM(A) = - 

2 s 
11 FA II2 d uol(M). (1.1) 

M 
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Its Euler-Lagrange equation is 

d;FA = 0. (1.2) 

A particular subspace of solutions of (1.2) namely the space of instantons, is extensively 
studied. It is worthwhile to note that there are also non-instanton solutions (see [4]). The 
moduli space M of instantons is useful to predict appearance (or disappearance) of in- 
stantons using for example the semiclassical approach (see [S]). For any kind of phys- 
ical relevant information one has to quantize the gauge theory. One possibility is the 
Faddeev-Popov method which is based on the path-integral formalism (see for instance 
[ 171 or [ 181). As an intermediate step one obtains a new Lagrangian, called efective 
lkgrangian. 

It can be written in the following way: 

&(A, I?, ii) = LYM(A) + 
s 

(tit Sri) + GF(A, rl, 3. (1.3) 

Here n and ?/ are auxiliary fields, called “ghost” and “anti-ghost” fields. The term G F (A, q, rj) 
comes from a “gauge-fixing”, i.e. from a local section in a fibre bundle. There will be no 
global section in general (see [ 191). Since the path-integral “measure” is complex, the 
ghost and anti-ghost fields take their values in the odd part of a superspace and the integral 
[(q, Sq) is understood in the sense of Berezin (see [I ,I I]). With this it is possible to inter- 
pret exp(i s(q, Sn)) as the Berezin determinant of the operator S. Note that L,n is no longer 
gauge invariant. There is a new type of symmetry called BRS-symmetry (see [ 171). These 
can be interpreted as super-gauge transformations (see [9]). They became an interesting 
field to study, mainly from the algebraic point of view (see for instance [3] or [lo]). 

In this paper we quantize gauge theories using the real path-integral measure. Moreover, 
on the base manifold we take a Riemannian metric instead of a physically relevant Lorenzian 
metric (commonly known as euclidean quantum field theory). 

One obtains the following effective Lagrangian: 

&r(A)= LYM(&+&(~)> (1.4) 

where {A(s) is the zeta-function ofthe self-adjointpositive elliptic operatord:dA (we restrict 
our attention to irreducible connections A to obtain positivity of the Laplacian didA). 

The associated equation of motion becomes 

d;FA+;JA=O. (1.5) 

Note that (since didi FA = 0) 

d;JA = 0 (1.6) 

if the gauge-potential A satisfies (1.5). Physically, JA can be considered as a current. It 
is the vacuum polarization current due to the propagation of quantum fields arising from 
the field A (see [5]). In Sections 3 and 4 we will study more precisely the current JA by 
making use of the heat-kernel. In Section 3 we derive general formulas for the calculation 
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of S{;(O) using standard techniques (see [2,6,8]). In particular, we will also point out the 
close relation to the second fundamental form of gauge orbits (see [ 121). We state this in 
Corollary 3. In Section 4 we generalize a proof of Corrigan-Goddard-Osbom-Templeton 
(see [6, Section 21) to obtain the following theorem which will be our main result, 

Theorem 1. Let P + M4 be a principal G-bundle ol-er u closed cnnnected orientable 
Riemanniun 4-man[fZd M4. Let A be un irreducible principal connection and let 

d;dA : S2”(M, adP) + &(M. udP) 

be its L.uplacian with associated Green function 

GA(.Y. y) = SA(X, y) + RA(x, .v). 

where RA(.~, !t) is smooth, i.e. RA(x. y) is the regularpart qf GA(x. y). 
Moreover, let 

aj(x. y) E T(M x M, End(adP)) 

be the jth co@cient in the asymptotic heat-kernel expansion of didA. 
!f the scalar curvature of M is zero. then we have 

1fC b-4 
JA=-- 

12n’ diFA + (4rr)2 -dALIi - dARA. 

where C is the Euler constant and 

b=;-C+log4 (see Appendix A). 

We think of the group G to be the group SU(2). But the theorem holds for other 
groups too. The formula needs some explanation. It holds in R’ (M. End(ad P)). By FA E 
fi’(M. udP) we denote the curvature of A, i.e. d;FA E Q’(M. End(adP)). We think 
of di FA E Q ’ (M, End(ad P)) as the endomorphism 1 -form induced by [dT, FA (x). .I in 
each fibre. Moreover, dAal is the “partial” covariant derivative applied to the first variable 
of at (x. y) restricted to the diagonal, i.e. 

diul (x. y)l,.=,. 

Similarly, 

dARA(x) = d&(X, Y)],=.x. 

The coefficient ut appears explicitely in the Green function (see Section 4): 

1 
GA(X-y) = (4n)2 al(x, y)logp’(x, .v) 

> 
+ RA(X. ?'I. 

The case treated in [6] is when ut = 0. Their theorem then says that the polarization 
current JA around an instanton depends only on the regular part of its Green function. Our 
hypothesis that the scalar curvature is zero is equivalent to 

L7l(.X.X) = 0 
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for every x E M (see for instance [2, p. 841 or [7]). Most of our arguments used to prove the 
above formula can be found in the literature. We are particularly indebted to [2,6,8,12,14]. 

2. Quantization of Yang-Mills functionals and the effective Lagrangian 

The goal of this section is the derivation of a Lagrange functional by means of field 
quantization. For this we follow closely the paper of Groisser and Parker [S]. We recall 
first some basic notation. Let P -+ M4 be a principal G-bundle over a closed connected 
orientable Riemannian 4-manifold M. Our standard example will be an SU(2)-bundle. Let 
T(AdP) = 6 be the gauge group, i.e. AdP = P ,& G. By C we denote the affine space of 
connections on P. An element A E C determines a covariant derivative 

dA : i2p(M, adP) -+ L?p+‘(M, adP), 

where adP = PaXdLie G is the adjoint Lie algebra bundle. The metric g on M and the 
killing form K on Lie G determine an inner product ( , ) on APT* M @ad P. This defines 
the L*-inner product on Qf’(M, adP): 

(0, a’) = 
s 

((T(X), a’(x)) d vol(M, g). (2.1) 
M 

The connection A E C can also be described by its connection form 

WA : TP + LieG. 

The gauge group 6 acts on C in the obvious way. Let C/4 be the orbit space. Introducing 
suitable Sobolev completions one can prove that the restriction of the canonical projection 
n : C + C/G to the irreducible connections C* is a principal 6*-fibration, where 8* = 
G/Z(G) (Z(G) the centre of G) (see [ 131). The subset C* is open and dense in C, hence 
the tangent space at A E C* is the affine space A + L?‘(M, adP). Any element a E 
Q’(M, adP) can be decomposed as (note that A is irreducible) 

a = dA (didA)-‘d; (a) + (a - dA (didA)-‘d:(a)), (2.2) 

where dA(d:dA)-‘d;(a) is tangent to the orbit of A E C*, and a - dA(dj;dA)-‘d:(a) 
is “horizontal” with respect to C* + C*/G*. In other words, (2.2) defines canonically a 
connection on C* -+ C*/G*. Its connection form is denoted by 

1;2 : TC* -+ Lie G* = Q”(M, adP). 

It is given by 

D(a) = (didA)-‘d:(a) 

For a given connection A, let FA E Q*(M, ad P) be its curvature. 

(2.3) 
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The Yang-Mills functional 

LvM : c + [w 

is defined by 

LYM(A) = i 
s 

(FA, FA) d Uol(M. g). (2.4) 

M 

It is known that LyM is G-invariant, hence it can be considered as a functional on the orbit 
space C/G. The expectation value of an observable $J : C + R. i.e. of a G-invariant function 
4, is a quotient of path-integrals 

(~) = J @(A)e-LYM(A)Dd 
1 e-LYM(A)2)d ’ (2.5) 

where integration (in the sense of Feynman-Wiener) is over the space of paths of connections 
of all principal G-bundles over M. We use this quantization procedure to derive our effective 
Lagrangian. Let us consider the path-integral over a fixed principal G-bundle P -+ M, i.e. 
over C (or even C*). Let B* = P/g*. Now the splitting of 

TAC* = A + L”(M, adP) 

given by the connection fl (see (2.3)) is L2-orthogonal. This defines a metric on the hori- 
zontal part, i.e. on TB*. In analogy with the finite-dimensional case we can write 

s 4(A)edLyMtA)Dd = uol(G) 
s 

~([A])e-L’M(iA1’(detd~dA)1/2~08. (2.6) 

C’ t?* 

Note that 

--do : LieG -+ TAC* 

is the induced map of the orbit inclusion iA : G --f C at A. One has gained by this method 
that the infinite volume of G* drops out in (2.5). On the other hand, the determinant of the 
self-adjoint operator 

did/q : L?‘(M, adP) + 1;2’(M, udP) 

can be calculated using the zeta function 

(2.7) 

Writing the total action as an exponential one is lead to make the following: 

Definition 1. 

La(A) = LYM(A) + ;&(o) 
is said to be the tzfective Lagrange functional. 
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Lemma 1. The effective Lagrange functional 

L .c*+Iw eff . 

is invariant under G*, i.e. induces a map 

L eff : c*/G* + l-2. 

This follows immediately from Lemma 3.1(a) of [8]. 
With this definition one can write the path-integral in the form 

s 
q5([A])e-Leff([A1)DB. 

t3* 

To proceed further, physicists apply perturbative methods. To write down the n-point Green 
functions, i.e. its generating functionals, the exponent L,ff(A) has to be written in the form 
of an integral over M (see [ 17,181). 

Since 

1 
LYM(A) = - 

2 s 
(FA, FA)duol(M), 

M 

it is desirable to write [A (0) as well as an integral over M. 

3. The equation of motion 

We consider the effective Lagrange functional 

L,ff : c* + R 

defined in Section 2. To derive its Euler-Lagrange equation one considers its differential 

6L,ff : TC* + R. 

For a fixed A E C*, 

GL,ft(A) : TAC* + 03 

is a bounded linear map. In more detail, for any a E l2’ (M, ad P) we have 

GL,ff(A)(a) = 
s 

(d;FA.a)dvol(M) + ~S[~(O)(a). 

M 

Definition 2. Using the L2-inner product of R’ (M, adP) we define .,A by 

6<;(O)(a) = 
s 

(JA, a) d U?/(M). 

M 

(3.1) 



A. Cuvicchiali. E Hegenbarth/Journal of Geometry and Physics 25 (1998) 69-90 7.5 

Note that JA belongs to the L*-completion of Q ’ (M. ud P). The equation of motion can 
now be written in the form 

diF* + ~JA = 0. (3.2) 

The current is rather an abstract object. In order to get more information we are going to 
calculate Sg‘A(O). 

In the following we will write “Tr” for the truce of an operator on a space of sections and 
“tr” for the truce of an endomorphism of a single fibre. 

We begin with the following formula (see [20, Section 41 or 18. Lemma A.61): 

t;(o) = C<A@) + s & t.r-ITr(e-‘d;;dA) rA(o) (3.3) 
.s 

0 1 ’ \ 4 

where C is the Euler constant. 
The integral 

BA(.s) = r(.s)(A(s) = s dt t”-1 Tr(e-‘d;dA ) 

0 

has a simple pole at s = 0 with residue equal to <A (0), i.e. it expands as 

M 

s & t”-1 Tr(e-rd;dA) = CA (0) 
- + h(A) + bl (A)s + . 

s 
0 

Therefore it follows from (3.3) 

s&(O) = C&4(0) + Gbo(A). 

Since ker(didA) = 0 (because A is irreducible), we have 

1 
CA(O)= & traz(x, X) d uol(M). 

M 

The asymptotic expansion of the heat kernel takes the following form: 

1 
G(t. .Y. .Y) _ e-p’(s.y)/4t 

(43Tt)2 
a, (x, y)t” 

n=O 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

as t + 0. Here a, (x, y) are sections in the bundle 

udP@adP*-+MxM 

and 

p:MxM+R 

is a distance function near the diagonal (we abuse notation and do not write LI, (x. x) as a 
form or density, see [2] or [8]). 
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Observe that 

adP &I adP*lncMj = End(adP), 

where A(M) c M x M denotes the diagonal of M x M. 
By Lemma 4.1 (a) of [ 81 one has 

tra2(X, X) = 3h(x) - i(FAb), FA(x)), 

where h(x) does not depend on A, hence it disappears in s{,(O). 
Putting this into (3.5) we obtain 

1 c 
&(O) = --- 

3 (4n)2 
6 

s 
(FA, FA) d t&(M) + &(A). 

M 

If we define jA as JA by 

abo(A = s (jA, a) d uol(M), 
M 

then one obtains the following equation of motion from (3.2): 

(1-5s) l diFAfTjA=O. 

(3.8) 

(3.9) 

(3.10) 

Note that the variation of the integral in (3.8) contributes 2di FA. The current jA belongs 
to the L2-completion of fi’(M, udP). 

To calculate &(A)(u) we have to consider (by (3.4)) 

6BA (s)(a) = ,‘eo f @A+rab) - BA (S)) 

By Lemma A.5 of [8] we have 

co 

8BA(s) = - 
s 

dt t”tr(&(didA)e-‘didA) 

0 

with 

= d:, o [a, .I - *[a, .I * dA 

for any a E L?‘(M. udP). 
Here the map 

(3.11) 

(3.12) 

[., .] : Q’(M, udP) x Q’(M, udP) + 52’(M, udP) 
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is the pairing induced by the Lie brackets on the tibre. The symbol * denotes the Hodge 
operator on forms given by the metric on M. Note that di = - * dn*. 

Thus we can state 

Lemma 2. -SbA(O) is the constant term in the s-expansion cf 

cx3 

s 
dt t” Tr(S(didA)e- $,dA), 

0 

For S(dzdA) we observe the following. 

Lemma 3. 
(1) !f‘a = dA)?, where q E .R’(M, adf’), then 

s(didA)(a) = didA 0 [rl, .] - [v, .] 0 d;dA. 

(2) Zfdi(a) = 0, then 

S(didA)(a) = -2 * [a, .] * dA. 

The proof follows by direct calculation. In particular, the proof of part (2) can also be 
foundin [12] (seeLemma2.13). 

CoroIIarY 1. Ifa E ImdA C Q’(M, adP), then ahA = 0. 

This follows immediately from Lemma 3( 1) since didA is a Hilbert-Schmidt operator. 
This corollary is of course not surprising because {A (0) is gauge invariant (see Lemma 3.1 (a) 

of F31). 
Henceforth we have only to consider horizontal elements in TAC* = f2 ’ (M. ad P ). 
Let us denote 

- * [a, .I* = [a, .I*. 

Then we have: 

Corollary 2. Let ‘l-l = Ker G? c TC* be the horizontal subbundle (see Section 2). Then 
-( 1/2)6bA (O)(a) is the constant term in the s-expansion of 

X 

s 
dt t” Tr([a, .]*dAe--fd;dA) 

0 

Corollary 2 is related to the second fundamental form of the gauge orbit 0,~ = G* A c C* 
(see [ 121). 
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For any a E TAC and d:(u) = 0 (i.e. a E 8~) there is defined the second fundamental 
form 

H, : L2’(M, adP) + Q’(M, adP) 

(see 2.15 of [ 121). Its regularized trace is given by 

clj 

trH, = 

[I 

dt t” Tr([a, .]*dAe--tdidA) 

0 I 

. (3.13) 

s=o 

As explained in [ 121, the right-hand integral can have a pole at s = 0. This occurs precisely 
when A E C* is not a Yang-Mills connection. 

So we can reformulate Corollary 2 as follows. 

Corollary 3. The value 6bA (O)(a)f or any A E C* and a E 8~ is equal to the regularpart 
of the trace of the second fundamental form H, of the gauge orbit @A C C*. Moreover 
minimal gauge orbits @A C c*, where A is a Yang-i%4ills connection, are sohttions of the 
equation of motion (3.2). 

We will now consider another aspect of 6bA(O) and do a partial integration on (3.11). 
Putting u = tS and 

u' = Tr(G(didA)e- td;d,.q 
)? 

one gets 

-&s,(S) = [t” Tr(8(d~dA)(d~dA)-‘e-rd~dA)]~ 
00 

-S 
s 

dt t”-’ Tr(6(d~dA)(d~dA)-‘e- +A). (3.14) 

0 

This can be done for Re(s) sufficiently large. The first summand vanishes, so we have the 
following result. 

Lemma 4. 6bA (0) is the residue at s = 0 of the meromorphic extension of the integral 

00 

s 
dt tspl Tr(6(didA)(didA)-‘e- td;dA 

) 

0 

For the meromorphic extension it suffices to consider the integral in the equation of 
Lemma 4 between 0 and 1 (a similar proof as for Lemma A. 1 of IS]). If we now expand the 
integrand under & in a series in t, then we obtain: 

Lemma 5. SbA (0) is the constant term in the t-expansion of 

Tr(S(didA)(d$dA)-‘e- td;dA ), 



A. Cavicchioli, E Hegenbarth/Journal oj’Geornetp and Physics 25 (1998) 69-90 7’) 

This is the starting point for further calculations. We will explain it in more detail in the 
next section. 

4. On the polarization current 

We continue to study the current jA (x) defined by (3.9) 
From Lemmas 3 and 5 we obtain that 

s 
(is,a)dvol(M)=6b~(O)(a) 

M 

Now observe that 

= -2 constant term in the t-expansion of 

Tr(*[a, .] * dA(didA))‘eP %da ). (4.1) 

(dzdA)-‘e- td;dA = e-rd;d/t (d;dA j-1. 

We make use of this commutation and note that the heat kernel GA(x, .v. I) of tl,:d,l is 

smooth. Therefore ~~GA(x, y, t) is the kernel function of dAeprdidn. The upper index x 
denotes the purtial covariant derivative with respect to the x-variable. 

Let GA (x, y) be the Green function of d/;dA. 
Then we get 

Tr(*[a, .] * dA(didA)p’e-td;fdn) 

= tr(*[a(x), .] * diGA(x. y. t)GA(y, x)) dy dx. 

Here dx (resp. dy) is d uol(M), i.e. the infinitesimal volume element of M. 
Now recall that the scalar product of LieG is the negative of the killing form. 
Then (4.1) and (4.2) imply 

[jA(x,, .] = 2 c.t. 
I 

d;GA tx, y. t)GAo’. x) dv. 

M 

where CJ. stands for “constant term” in the t-expansion. 

(4.2) 

(4.3) 

Remark 1. The value of (4.2) is the difference in traces of two trace class operators. To 
see this, let us denote A’ = A + u. 

Then we have 

*[u. .] * dA = d;,dA - didA. 

Let Pr = eptdidn and Q,$ = (dzdA)p”. Then Pt is a Hilbert-Schmidt operator (in fact it is 
of trace class), hence P, Qs is Hilbert-Schmidt. 
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Moreover, we have 

PtQs = Qsf't$ 

hence 

Pt Qs = (P,/2Qs/2)(Pt/2Qs/2), 

i.e. P,Qs is of trace class too. The operator di,dA has a smooth kernel, so it is also 
Hilbert-Schmidt. Therefore, the composition d:,dA Pr Qs is of trace class too. 

Its kernel function is 

Ua(x, w, t, s) = 
ss 

K,(x, y)GA(y, z, t)L(z, w, ~1 dy dz, 

M 

where K, and L(., ., s) are the kernels of d:,dA and Qs, respectively. 

Therefore, we have 

Tr(di& Pt Q,r> = 
s 

trU,(x,x, t,s)dx 

M 

and hence (4.2) becomes 

s tr&(x, x, t, 1) dx - 
s 

trUo(x, x, t, 1) dx. 

M M 

Observe that&(x, y, t, 1) = GA(x, y, t). 
Now we will calculate [jA(x), .I. This requires some preliminary calculations. 

Let us begin by calculating di GA (x, y , t). 
From (3.7) we get 

d me ii 
i 

1 -P2b.YW 
fi Gt(x, Y)t” 
n=O J 

cc 

c &I (x, Y)f” 
n=O 

1 

++iZpe 
-P2(x.y)/4t d+dx, yh”, 

II=0 

where 

( 1 

ai gzpe 
-P2(X.Y)W 

> 

=-_ 1 (ditj2 a;p2k Yk 
-PqxJ)/4t~ 

(4.4) 

Here we have used the notation 

dA = (a, + Ati)dx’. 
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Now recall that 

is the parallel transport of A. 
Using the Mellin transformation 

1 3o 
L,T(X. v) = - 

T(s) s 
dt tS-‘GA(x, y, r), 

0 

one can calculate GA(x, y) = Lt (x, y). 

Lemma 6. For p(x. y) < r, where r is the injectivity rudius, one has 

1 
GA(X3 Y) = (4n)2 

4uo(x, Y) 
p2tx, ?) -al(x,.V)logp2(x.y) +RA(X,y). 

> 

where RA (x, y) is a smooth function. 

For a proof we refer to [ 14, Theorem 2.21. 
We have to calculate the constant terms in the asymptotic t-expansions of all possible 

products of (4.4) with GA(x, y). 
For this we need formulae for asymptotic expansions of type 

1 

(4nt)2 s 
v(y)e-&‘Z(X4’)/4’ dv 

and 

1 

(4Jct)’ s 
q(y) log p(x, y)e-p2(X‘Y)/4’ dy. 

R” 

Here cp : R4 + V is a smooth map into a vector space V. In a normal coordinate system the 
metric g is standard modulo 11x - ~11’. It will be sufficient to consider the case p(x, y) = 
11 x - y 11. Applying the cut-off procedure our applications regard maps cp which are zero 
outside a small ball around a point x. By taking components of q we can assume V = [w. 

Lemma 7. Let cp : R4 + V = [w be a smooth map such that cp(x) = 0. Then we have 

1 

(4x t)2 s 
q(y) log 11.x - y(I e-“x-v”2/4r dy 

Iw4 

Here (Y = (crl, cr2, . . .), Ial, cp@), and (Y! represent the usual multi-index notation. 
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The constants b, and c, can be calculated: 

1 
b, = - 

(4X)* s 
e-llu112/4 IY log jlull dv 

R4 

1 
cff = (4n)2 s 

e-11d12/4 # dv, 

w 

Prooj Making the standard substitution y - x = fi v, one obtains 

1 

(4nt)2 s 
p(y) log 11~ - y/J e-llx-~112/4r dy 

w4 

1 

=* s 
cp(x + l/i u) log &e-ll”112/4 dv 

R4 

1 

+ (4Tr)2 s 
cp(x + fi u) log Ilull e-““‘2’4 dv. 

f-%4 

Now we have 
03 tlW 

cp(x + Au, - c u’YqJ(qX)- 
cl! . 

Ial= 

The result then follows. To avoid the term 

1 
b. = - 

(4n)* s 
(o(v) log Ilull e-llU112’4, 

r-84 

which might not exist, we have used the assumption q(x) = 0. 

Similarly one proves: 

Lemma 8. Let p : R4 -+ V = R be smooth. Then we have 

1 

s 
vo(y)e -llx-Y112/4t dy - 2 

tlW 

(4nt)2 
qlqx)c, - 

JLyI=O c-w! 
R4 

with ca as above and co = 1. 

The following lemma is well-known. 

Lemma 9. 
1 

(1) - 
(4nt)2 s 

-1b11*/4r dv 

isfinite of:;der tla1/2-L if Ia l/2 - L > -2. It is zero ifa # 28. 
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We must also calculate di t(x) y). The proof is lengthy so it will be given in Appendix B. 

Proposition 1. Let 

d,At(x. y) = aft(x, y)dx? 

Then, in the normal coordinate system around x = (xi), the fiNowing expansion holds: 

afs(x. y) = -@(x)(y” - 2). .] 

- {[apF*s(x)(yS - x”)(y’ -x’), .I + o(ll x - y II’). 

As a consequence of Lemma 7 we obtain the following. 

Corollary 4. Suppose that cp : R4 -+ V = R is smooth. Thefollowing holds: 
(a) !f p(x) = 0, then the constant term in the t-expansion of 

1 

(4?7f)2 s 
v(y) log p(x, y)e-p2(.r,Y)/4t dq’ 

wj 

is zero; 
(b) Zfq(x) = 0, then the t-linear term in the asymptotic t-expansion of 

1 

(47rt)Z s 
q(y) log p(x. y)e-p2(“.“)/4f dy 

w 
is equal to 

ProojI (a) Follows immediately. For (b) we have to calculate the constant term of 

Since W2 log -Ji + 0 as t -+ 0 whenever 1~~1 > 0, there remains only 

c b,@)(x) L. 
Ial= Cl! 

But by symmetry reasons we have b(IL,v) = 0 for p # u, and 

b (P./l) = b(l.1) = b. 

Observe that for the proof of (b) the assumption q(x) = 0 is essential. The coefficient 
b = b( 1. I ) will be calculated in Appendix A. 
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Finally we recall that (see (A. 12) of [ 121) 

d$s(x, y)l?;,x = 0. 

We have now all ingredients for our calculation of [jA(X), .I. 
We begin with the contribution of RA(X, y), i.e. 

(4.5) 

2 c.t. 
s 

dAGA(X, y, t)RA(y, x) dy. 
M 

Since we are interested in small r-values, we can apply the usual cut-off procedure and 
assume GA (x, y, t) = 0 outside the normal neighbourhood B(x, r). So the integral can be 
transformed into the disc of radius r in R4. The transformation y - x = ,/? u changes the 
integral into an integral over a disc of radius fi/t which becomes an integral over R4 as 
t + 0. Hence we can apply the above asymptotic expansions. 

Using (4.4) we have to consider 

t” 

2 (4Trt)Z s dia,(x, Y)RA(Y, X)e-~~x-y112’4t dy 

as t -+ 0. This gives zero for n > 0 by Lemma 8. 
For n = 0 we obtain by (4.5) 

1 

2 (4nt)2 s 
diao(x, Y)RA(Y, x)e -“x-y”2’4r dy = 2diao(n, y)R~(y, x)lYEx = 0. 

Iw4 

Now consider the other part of dAGA (x, y, t): 

1 t” -2--- 
4t (4nt)2 s 

a,(~, y)R~(y, x)atp2(x, y)e-p2(X*y)/4r dy 

R4 

ast + 0. 
Let 

(P(Y) = &(x7 Y)RA(Y,X)~$~(X, Y). 

Since v(x) = 0, the only relevant term comes from n = 0. 
By Lemma 8 it is equal to 

-2; c !c$!, 
‘a’=2 

where 

Vo(Y> = ao(x, Y)RA(Y, x)aLP2(x, Y). 

Since dAt(x, Y)I~,~ = 0, one has 

ao(x, Y) = Id + o(llx - yl12)> 
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hence it follows that 

= - c 2&&(x,x)dxii 
a=(LJ.l*) 
1 

= -2ql.l) c a&(X,X) dx’ = -+(,.t~ dRA(x. x). 
cc 

Since 

1 
“(1.1) = g$ 

s 
u;e-1ii’#/4 d,, = 2, 

R” 

one obtains 

2 c.t. 
s 

~AGA(x. yq t)RA(y,X)d?; = -dRA(x. X). 

M 

(4.6) 

Next we calculate the contribution of 

1 
---al(X, .Y)logp2(x. y). 

(4n)’ 

i.e. 

2 c.1. 
2 

-- 
(477)2 s 

d~G~(~,~.t)u~(.y.x)logp(x,~)d?, 

M 

Using (4.4) we have to consider 

4t” -- 
(4X)2 s 

+,(x, y)a) (y, x) logp(x, _JJ)~-~~(,‘,~)‘~~ d> 

R4 

ast -3.0. 

We set 

V(Y) = &Gl(x, Ykl (Y, xl. 

By hypothesis that the scalar curvature vanishes, we have at (x, x) = 0, i.e. q(x) = 0. We 
have no contribution for n = 0 by Corollary 4(a). 

The other part is 

4 I t” --- 
(4n)2 4t (4nt)2 s 

a,(x, y)ut(y, x)a;p2(x. y) logp(x, y)e0+)‘4’ dy. 

R4 

Putting 



86 A. Cavicchioli, F Hegenbarth/Journal of Geometry and Physics 25 (1998) 69-90 

we have obviously that p(x) = 0. There are only two relevant values for n which contribute, 
namelyn =Oandn = 1. 

For n = 1 we can apply Corollary 4(a) to get zero. 
For II = 0 we get from Corollary 4(b): 

-2 
2 c.t.- 

(43r)2 s 
~AGA(X~ Y, tbl (Y, x) @‘P(X, y) dy 

M 

4 11 
= --_b(l.l) 

(4n)2 4 2 c 4 -$-(x)dx” 
p=l 

_ b(l.1) 1 b(t,t) 
2 (47r)2 

2dat(n,x) = (4n)2 - da1 (x, x). (4.7) 

Note that the factor 2 in front of dat (x, x) comes from 8ip2(x, y). We will calculate 
b = b(l,l) in Appendix A. 

It remains to calculate 

4 

2 c.tq$ s 
~~GA(x, Y, th(y, xW2h, Y) dy. 

M 

According to (4.4) we have to consider 

4 1 t” 
---- 

(4n)2 4t (4nt)2 s 
&(x, YbO(Y, x) 

Q?x, Y) 

P2(X, Y) 
e -P'(x.?'1/4r dy . 

R4 

If we look at the Taylor expansion of 

dY> = GI(x, YbO(Y, x)a;P2k Y>, 

it will be of the type 

q(y) = 2(yfi - x’“)(a,(x, x)ao(x, x) +. . .>, 

where in the larger parenthesis is indicated the Taylor expansion of a, (x, y)uu ( y , x). Note 
that for II = 0 we have ua(x, y)uc(y, x) = Id, hence the integral vanishes by Lemma 9( 1). 
Again, it follows from Lemma 9( 1) that non-zero contributions can only occur for n = 1. 
In this case, since uc(x, y) = Id + 0(11x - y[/*) and al (x, x) = 0, the Taylor expansion is 
of the type 

(P(Y) = 2(yfi - xfi) 
i 

C@x. x)(y” - x”) + . . . . 
” 1 

The higher terms do not contribute by Lemma 9. 
Then we obtain by Lemma 9(2) 

4 1 
-2- -a;ul (x, x) dxP = - 

4 

(4?r)2 2 
-&q (n, x). 
(47r)2 

(4.8) 
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It remains to consider 

4 t” 
-- 

2(4n)2 (47ft)Z s 
dia,(x, y)uo(y. x)p-‘(x, y)e-P’(-r.y)‘4t dv. 

Again, it can be seen that only II = 0 gives a contribution. 
We apply Proposition 1 to 

d;nn(x. v) = a+&. y) dXh. 

Since au(.r. .v) = Id + o(]l x - _v ]12), only the quadratic term in the expansion of dAU() 
contributes by Lemma 9. 

Thus one gets 

4 
2 - 

(4~)’ 
6’p Fhr(x) dXh = - &d;FA(x) (4.9) 

Remark 2. In Lemmas 7 and 8 the functions cp : R4 + V are local representations of 
globally defined sections. For example, 

cp(.~) = ao(x, .v)a~(y, x) : U, -+ (udP), @ (adP):. 

where CJ, is a neighbourhood of x in M. However, to trivialize ad P 1~~ we use the parallel 
transport r(x. v) : (udP), --f (udP),. Hence to localize aj(x. y), one has to form the 
composition with r(x, y). Moreover, in U_, we take the normal coordinates exp,y) = v. As 
a consequence, the partial derivative a,u 1, for example. is the partial derivative of a,, (T o a I ) 
which equals $ut by Lemma (A.9) of [ 121, where 

ai = a, + [A,, .I. 

This means that da1 becomes dAul in a coordinate free description. The same holds for 

RA. 

Putting together (4.6)-(4.9) we obtain the following result. 

Theorem 2. [f M is a closed connected orientuble Riemannian 4-manifold of scalar cur- 
vature zero and P + M is a principal SU(2)-bundle, then the current jA, dcIfined by (3.9), 
satisjes the,formulu: 

b-4 
[.jA(X), .I = -&[d:F”k). .I + (4x)?dAal(X. X) - dARA(X,X). 

where 

1 
b=b - 

(‘.I) = (47s)2 s 
v~e-~~‘~12/4 log ]I u (I dv = i - C + log4. 

Together with formula (3.8) we have 
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4 c 
JA=------- 3 (4,r)ZdiFA + jA 

= _1+cd* FA + 
b-4 

12x2 A 
-dAal - dARA, 
(4n)* 

proving our main result. 
The equation of motion becomes 

(4.10) 

(4.11) 

Remark 3. For irreducible connections A we have calculated the current JA under the 
hypothesis that the scalar curvature of the underlying Riemannian manifold is zero. The 
current JA belongs to the L*-completion of Q’ (M, adP). However, the calculation is done 
in Q’(M, End(adP)), and therefore d: FA means [d> FA, .I. 

Appendix A 

We are going to calculate 

1 
b=b - (t,r) = (4=)* s 

v:eC11’1112/4 log 11 u 11 dv. 

R4 

By symmetry, we have 

1 1 
b(l.1) = -- 

4 (4n)2 s 
)I u II* e-“““2/4 log I( u 11 dv 

iF84 

M 11 -- 
= 4 (47r)2 s 

r2e-‘2/4 S, log r dr, 

0 

where 

S, = volume (S3 = {u E [w4 : IIu [I*= r2}) = 2n2r3, 

Therefore, it follows 

I 2n* O” 
b(l,l, = -- 

4 (4n)2 s 
r5eCr2j4 log r dr 

0 

2@= 
=--- 

43 s 
r5eprzi4 log r dr. 

0 

Using a formula on p. 527 of [ 151, one gets 
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2 1 
b -r(3) (G(3) - log l/4) (1.1) = 434(1/4)3 

= -C + 1 + l/2 + log4 = 3/2 - C + log4. 

Appendix B 

In this section we are going to prove Proposition 1. In the appendix of [ 121 the Taylor 
expansion of the parallel transport was explicitly calculated: 

t(n-, J,) : (UdP)! -+ (adP)_,. 

It can be written in the form 

t(x. v) = Id + A,(y)(x’” - y/*) + ;&A,(r)(d’ - y”)(X” - y”) 

+ &uA,,(.v)(x” - y/^)(x” - y”)(xy - vy) + higher orders. (B.1) 

Here it is understood that (x@) and (yp) are the normal coordinates in a normal coordinate 
system centred at a fixed point z. Moreover, the right-hand side of the formula acts on (crd P), 
via the adjoint representation, i.e. via Lie brackets. This can be seen by inserting the detailed 
calculations made in [ 121 in formula (A.7). 

On the other hand, from Proposition 1.18 of [2] we obtain 

A,(y) = -iFpk(x)(yk - xk) - ~&Fpk(x)(yk - xk)(y’ -x’) + higher orders. 

03.2) 

This formula holds in a normal coordinate system centred at the point X. 
To obtain our result we proceed as follows. We calculate 8; r (x, y) with respect to the 

x-variable. Then we put z = X, and use formula (B.2). Since A,(x) = 0, it will be enough 
to calculate i3~s(x. y). It can also be seen that the 3rd-order term of (B.l) is not relevant 
to us. 

Thus we have to consider 

h(Ati,(.v)(xp - y@“)) = AA(Y). 

&(;&A,(y)(x p - yc”)(x” - y”)) 

= ;&A&)(X” - y”) + $3,A,,(y)(xp - y/*). 

(B.3) 

Now we put ; = X, and use (B.2) to calculate 

&AA(V) = -&(x) - f@,&,(x)(g’ -x’) + a,&&)(.? - ~“1). 

a~.Ap(p) = -$F~A(x) - ~(~,F~A(x)($ -x’) + a,Fpk(x)(yk A-~~)). 

Inserting (B.4) into (B.3) we obtain 

03.4) 

~,(~&A,,(?,)(x~ - _+“)(x” - y”), 
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= -gF*“(x)(x” - .v”) + $,Fh”(X)(Y’ - x’)(x” - ?,“I 

+ f&F*&)(y’! - Xk)(X” - J”) + &(X)(XCC - .vp’) 

+ f?w,,*((X)(?” -x%x /* - .v@“) + $i*F&)($ - .Xk)(XV - f’)] 

= -;a,,F&)(?.k - Xk)(X” - $‘) 

= $3,,F*X(X)(‘k - x”)(y” -XV). 

This can be easily seen observing that Frs(x) = -F,,((x). Therefore the last term vanishes 
while the first and the fourth term cancel out. The remaining three terms are equal up to 
sign, so two of them cancel out. 

Using (B.2) again, we obtain 

afs(x, .v) = AA(Y) + iFik(.x)(# - xk)(.v” -xv) + higher orders 

= -iFhk(x)(# -I”) - {a,Fik(x)(#’ - x”)(y”’ - x”) + higher orders. 
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